题目内容

一动圆过点A(0,1),圆心在抛物线x2=4y上,且恒与定直线l相切,则直线l的方程为   
【答案】分析:要使圆过点A(0,1)且与定直线l相切,需圆心到定点的距离与定直线的距离相等,根据抛物线的定义可知,定直线正是抛物线的准线.
解答:解:根据抛物线方程可知抛物线焦点为(0,1),
∴定点A为抛物线的焦点,
要使圆过点A(0,1)且与定直线l相切,需圆心到定点的距离与定直线的距离相等,
根据抛物线的定义可知,定直线正是抛物线的准线,准线方程为y=-1
故答案为:y=-1.
点评:本题考查抛物线的定义,考查抛物线的性质,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网