题目内容

对于函数f(x),在使f(x)≤M成立的所有常数M中,我们把M的最小值称为函数f(x)的“上确界”则函数f(x)=
(x+1)2
x2+1
的上确界为(  )
A.
1
4
B.
1
2
C.2D.4
因为f(x)=
(x+1)2
x2+1
=
x2+2x+1
x2+1
=1+
2x
x2+1

又因为x2+1=|x|2+1≥2|x|≥2x
2x
x2+1
≤1.
∴f(x)≤2.
即在使f(x)≤M成立的所有常数M中,M的最小值为2.
故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网