题目内容
已知向量
=(sinx,﹣1),向量
=(
cosx,﹣
),函数f(x)=(
+
)
.
(1)求f(x)的最小正周期T;
(2)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,a=2
,c=4,且f(A)恰是f(x)在[0,
]上的最大值,求A,b和△ABC的面积S.
(1)求f(x)的最小正周期T;
(2)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,a=2
解:∵向量
=(sinx,﹣1),向量
=(
cosx,﹣
),
∴
+
=(sinx+
cosx,﹣
),
由此可得f(x)=(
+
)
=sinx(sinx+
cosx)+
=sin2x+
sinxcosx+
∵sin2x=
,sinxcosx=
sin2x
∴f(x)=
sin2x﹣
cos2x+2=sin(2x﹣
)+2
(1)根据三角函数的周期公式,得周期T=
=π;
(2)f(A)=sin(2A﹣
)+2,当A∈[0,
]时,f(A)的最大值为f(
)=3
∴锐角A=
,根据余弦定理,得cosA=
=
,可得b2+c2﹣a2=bc
∵a=2
,c=4,
∴b2+16﹣12=4b,解之得b=2
根据正弦定理,得△ABC的面积为:S=
bcsinA=
×2×4sin
=2
.
∴
由此可得f(x)=(
∵sin2x=
∴f(x)=
(1)根据三角函数的周期公式,得周期T=
(2)f(A)=sin(2A﹣
∴锐角A=
∵a=2
∴b2+16﹣12=4b,解之得b=2
根据正弦定理,得△ABC的面积为:S=
练习册系列答案
相关题目
已知向量
=(sinx,cosx),向量
=(1,
),则|
+
|的最大值为( )
| a |
| b |
| 3 |
| a |
| b |
| A、3 | ||
B、
| ||
| C、1 | ||
| D、9 |