题目内容
已知函数(1)求实数b,c的值;
(2)求f(x)在区间[-1,2]上的最大值.
【答案】分析:(1)当x<1时,由f(x)=-x3+x2+bx+c,知f′(x)=-3x2+2x+b.依题意f′(-1)=-5,故b=0,再由f(0)=0,能求出c=0.
(2)当x<1时,由f(x)=-x3+x2,知f′(x)=-3x2+2x,令f′(x)=0,得x=0,x=
.列表讨论,得f(-1)=2;f(0)=0;f(
)=
;f(1)=0.由此进行分类讨论,能求出f(x)在区间[-1,2]上的最大值.
解答:解:(1)当x<1时,f(x)=-x3+x2+bx+c,
∴f′(x)=-3x2+2x+b.…(2分)
依题意f′(-1)=-5,
∴-3(-1)2+2(-1)+b=-5,∴b=0,
∴f(0)=0,∴c=0,
∴b=0,c=0.…(4分)
(2)当x<1时,f(x)=-x3+x2,
f′(x)=-3x2+2x,令f′(x)=0,有-3x2+2x=0,∴x=0,x=
.…(6分)
…(8分)
f(-1)=2;f(0)=0;f(
)=
;f(1)=0.
∴当x∈[-1,1)时,f(x)最大值为2.…(9分)
当x∈[1,2]时,
当a<0时,f(x)是减函数;当a=0时,f(x)=0,此时f(x)max=0;…(10分)
当a>0时,f(x)是增函数,f(x)max=f(2)=aln2.…(11分)
∵当a
时,有2≥aln2,f(x)max=2,
当a>
时,有2<aln2,f(x)max=aln2.…(12分)
∴
.…(13分)
点评:本题考查利用导数研究曲线上某点处的切线方程的求法,具体涉及到导数的应用、函数的性质,解题时要认真审题,注意分类讨论思想的合理运用.易错点是分类不清导致出错.
(2)当x<1时,由f(x)=-x3+x2,知f′(x)=-3x2+2x,令f′(x)=0,得x=0,x=
解答:解:(1)当x<1时,f(x)=-x3+x2+bx+c,
∴f′(x)=-3x2+2x+b.…(2分)
依题意f′(-1)=-5,
∴-3(-1)2+2(-1)+b=-5,∴b=0,
∴f(0)=0,∴c=0,
∴b=0,c=0.…(4分)
(2)当x<1时,f(x)=-x3+x2,
f′(x)=-3x2+2x,令f′(x)=0,有-3x2+2x=0,∴x=0,x=
| x | -1 | (-1,0) | (0, | ( | 1 | ||
| f′(x) | - | + | - | ||||
| f(x) | 2 | ↘ | ↗ | ↘ |
f(-1)=2;f(0)=0;f(
∴当x∈[-1,1)时,f(x)最大值为2.…(9分)
当x∈[1,2]时,
当a<0时,f(x)是减函数;当a=0时,f(x)=0,此时f(x)max=0;…(10分)
当a>0时,f(x)是增函数,f(x)max=f(2)=aln2.…(11分)
∵当a
当a>
∴
点评:本题考查利用导数研究曲线上某点处的切线方程的求法,具体涉及到导数的应用、函数的性质,解题时要认真审题,注意分类讨论思想的合理运用.易错点是分类不清导致出错.
练习册系列答案
相关题目
已知函数
的图象过坐标原点O,且在点
处的切线的斜率是
.
(Ⅰ)求实数
的值;
(Ⅱ)求
在区间
上的最大值;
(Ⅲ)对任意给定的正实数
,曲线
上是否存在两点P、Q,使得
是以O为直角顶点的直角三角形,且此三角形斜边中点在
轴上?说明理由.
【解析】第一问当
时,
,则
。
依题意得:
,即
解得
第二问当
时,
,令
得
,结合导数和函数之间的关系得到单调性的判定,得到极值和最值
第三问假设曲线
上存在两点P、Q满足题设要求,则点P、Q只能在
轴两侧。
不妨设
,则
,显然![]()
∵
是以O为直角顶点的直角三角形,∴![]()
即
(*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
(Ⅰ)当
时,
,则
。
依题意得:
,即
解得![]()
(Ⅱ)由(Ⅰ)知,![]()
①当
时,
,令
得![]()
当
变化时,
的变化情况如下表:
|
|
|
0 |
|
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
|
极小值 |
单调递增 |
极大值 |
|
又
,
,
。∴
在
上的最大值为2.
②当
时,
.当
时,
,
最大值为0;
当
时,
在
上单调递增。∴
在
最大值为
。
综上,当
时,即
时,
在区间
上的最大值为2;
当
时,即
时,
在区间
上的最大值为
。
(Ⅲ)假设曲线
上存在两点P、Q满足题设要求,则点P、Q只能在
轴两侧。
不妨设
,则
,显然![]()
∵
是以O为直角顶点的直角三角形,∴![]()
即
(*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
若
,则
代入(*)式得:![]()
即
,而此方程无解,因此
。此时
,
代入(*)式得:
即
(**)
令
,则![]()
∴
在
上单调递增, ∵
∴
,∴
的取值范围是
。
∴对于
,方程(**)总有解,即方程(*)总有解。
因此,对任意给定的正实数
,曲线
上存在两点P、Q,使得
是以O为直角顶点的直角三角形,且此三角形斜边中点在
轴上