题目内容
已知直线,抛物线上有一动点P到直线,的距离之和的最小值是( )
A、 B、 C、3 D、2
D
(09年崇文区二模文)(14分)
已知直线,抛物线,定点M(1,1)。
(I)当直线经过抛物线焦点F时,求点M关于直线的对称点N的坐标,并判断点N 是否在抛物线C上;
(II)当变化且直线与抛物线C有公共点时,设点P(a,1)关于直线的对称点为Q(x0,y0),求x0关于k的函数关系式;当且P与M重合时,求的取值范围。
(09年崇文区二模理)(14分)
A. B. C.3 D.2
给出下列命题,其中正确命题的序号是 (填序号)。
(1)已知椭圆两焦点为,则椭圆上存在六个不同点,使得为直角三角形;
(2)已知直线过抛物线的焦点,且与这条抛物线交于两点,则的最小值为2;
(3)若过双曲线的一个焦点作它的一条渐近线的垂线,垂足为,为坐标原点,则;
(4)已知⊙⊙则这两圆恰有2条公切线。