题目内容
求下列各函数的导数:
(1)y=
;
(2)y=(x+1)(x+2)(x+3);
(3)y=-sin
(1-2cos2
);
(4)y=
+
.
(1)y=
(2)y=(x+1)(x+2)(x+3);
(3)y=-sin
(4)y=
(1)-
x
+3x2-2x-3sinx+x-2cosx. (2)3x2+12x+11
(3)
cosx (4)
(3)
(1)∵y=
=x
+x3+
,
∴y′=(x
)′+(x3)′+(x-2sinx)′
=-
x
+3x2-2x-3sinx+x-2cosx.
(2)方法一 y=(x2+3x+2)(x+3)
=x3+6x2+11x+6,
∴y′=3x2+12x+11.
方法二
y′=[(x+1)(x+2)]′(x+3)+(x+1)(x+2)(x+3)′
=[(x+1)′(x+2)+(x+1)(x+2)′](x+3)+(x+1)(x+2)
=(x+2+x+1)(x+3)+(x+1)(x+2)
=(2x+3)(x+3)+(x+1)(x+2)
=3x2+12x+11.
(3)∵y=-sin
(-cos
)=
sinx,
∴y′=(
sinx) ′=
(sinx)′=
cosx.
(4)y=
+
=
=
,
∴y′=(
)′=
=
.
∴y′=(x
=-
(2)方法一 y=(x2+3x+2)(x+3)
=x3+6x2+11x+6,
∴y′=3x2+12x+11.
方法二
y′=[(x+1)(x+2)]′(x+3)+(x+1)(x+2)(x+3)′
=[(x+1)′(x+2)+(x+1)(x+2)′](x+3)+(x+1)(x+2)
=(x+2+x+1)(x+3)+(x+1)(x+2)
=(2x+3)(x+3)+(x+1)(x+2)
=3x2+12x+11.
(3)∵y=-sin
∴y′=(
(4)y=
∴y′=(
练习册系列答案
相关题目