搜索
题目内容
O为平行四边形ABCD的中心,
=4
e
1
,
=6
e
2
,则3
e
2
-2
e
1
=____________.
试题答案
相关练习册答案
解析:3
e
2
-2
e
1
=
-
=
(
-
)=
=
.
答案:
练习册系列答案
新疆中考总复习系列答案
新疆名师名校名卷系列答案
新疆名校中考模拟试卷系列答案
新疆新中考系列答案
新疆中考名卷系列答案
新概念英语系列答案
新概念课外文言文系列答案
新动力高分攻略系列答案
新导航全程测试卷系列答案
新编初中总复习系列答案
相关题目
如图,多面体ABCDE的一个面ABC内接于圆O,AB是圆O的直径,四边形BCDE为平行四边形,且CD⊥平面ABC.
(1)证明:BC⊥平面ACD;
(2)若AB=5,BC=4,
tan∠EAB=
4
5
,求多面体ABCDE的体积.
(2013•湖南模拟)如图所示,已知△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,AB=2,tan∠EAB=
3
2
.
(1)证明:平面ACD⊥平面ADE,
(2)令AC=x,V(x) 表示三棱锥A-CBE的体积,当V(x) 取得最大值时,求直线AD与平面ACE所成角的正弦值.
如图,已知△ABC内接于圆O,AB是圆O的直径,四边形DBCE为平行四边形,EC⊥平面ABC,AB=2AC=2,
tan∠DAB=
3
2
.
(1)设F是CD的中点,证明:OF∥平面ADE;
(2)求点B到平面ADE的距离;
(3)画出四棱锥A-BCED的正视图(圆O在水平面,ABD在正面,要求标明垂直关系与至少一边的长).
如图,△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,AB=2,
EB=
3
.
(Ⅰ)证明:平面ACD⊥平面ADE;
(Ⅱ)记AC=x,V(x)表示三棱锥A-CBE的体积,求函数V(x)的解析式及最大值.
如图,已知△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,AB=2,
tan∠EAB=
3
2
.
(1)证明:平面ACD⊥平面ADE;
(2)记AC=x,V(x)表示三棱锥A-CBE的体积,求V(x)的表达式;
(3)当V(x)取得最大值时,求证:AD=CE.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案