题目内容
直线l过点(2,4)被两平行直线x-y+1=0,x-y+2=0所截得的线段的中点在直线x+2y-3=0上,求此直线l的方程.
分析:记直线l与两平行线的交点为A、B,AB的中点为C,则由题意知点B在直线x-y+2=0上,即B(2,4).设A(x0,y0),则AB的中点C的坐标为(
,
).因为点C在直线x+2y-3=0上,所以
+2×
-3=0,由此能求出直线l的方程.
| x0+2 |
| 2 |
| y0+4 |
| 2 |
| x0+2 |
| 2 |
| y0+4 |
| 2 |
解答:解:记直线l与两平行线的交点为A、B,AB的中点为C,
则由题意知点B在直线x-y+2=0上,即B(2,4). …(2分)
设A(x0,y0),
则AB的中点C的坐标为(
,
). …(4分)
因为点C在直线x+2y-3=0上,
所以
+2×
-3=0,
即x0+2y0+4=0. …(6分)
又x0-y0+1=0,
所以由
得A(-2,-1). …(9分)
故直线l的方程为:5x-4y+6=0. …(12分)
则由题意知点B在直线x-y+2=0上,即B(2,4). …(2分)
设A(x0,y0),
则AB的中点C的坐标为(
| x0+2 |
| 2 |
| y0+4 |
| 2 |
因为点C在直线x+2y-3=0上,
所以
| x0+2 |
| 2 |
| y0+4 |
| 2 |
即x0+2y0+4=0. …(6分)
又x0-y0+1=0,
所以由
|
得A(-2,-1). …(9分)
故直线l的方程为:5x-4y+6=0. …(12分)
点评:本题也可以设直线l的斜率,联立方程得交点A的坐标,然后得中点C的坐标,将C点的坐标代入直线方程x+2y-3=0得关于斜率k的等式,从而得解.
练习册系列答案
相关题目