题目内容
【题目】如图,正三棱柱
的底面边长为
,点
在边
上,
是以点
为直角顶点的等腰直角三角形.
![]()
(1)求证:点
为
边的中点;
(2)求点
到平面
的距离.
【答案】(1)详见解析;(2)
.
【解析】
(1)根据等腰直角三角形,可得
且
,根据三垂线定理可知
,而底面
为边长为
的正三角形,则即可证得点
为
边的中点;
(2)过点
作
,根据线面垂直的判定定理可知
平面
,
平面
,则
即为点
到平面
的距离,根据等面积法可求出
的长.
(1)证:
为以点
为直角顶点的等腰直角三角形,
且
,
三棱柱
,
底面
,
在底面内射影为
,
,
底面
为边长为
的正三角形,
点
为
边的中点;
(2)解:由(1)知
平面
,则平面
平面
.
在平面
内过点
作
于
,
![]()
且平面
平面
,
∴
平面
,
∴
即为
到平面
的距离,
在正三角形
内,∵
,
∴
,则
,
在
中,
,
则
,
∴
,
∴
到平面
的距离为
.
【题目】某中学高三(3)班有学生50人,现调查该班学生每周平均体育锻炼时间的情况,得到如下频率分布直方图,其中数据的分组区间为:
,
,
,
,
,![]()
![]()
(1)从每周平均体育锻炼时间在
的学生中,随机抽取2人进行调查,求这2人的每周平均体育锻炼时间都超过2小时的概率;
(2)已知全班学生中有40%是女姓,其中恰有3个女生的每周平均体育锻炼时间不超过4小时,若每周平均体育锻炼时间超过4小时称为经常锻炼,问:有没有90%的把握说明,经常锻炼与否与性别有关?
附:![]()
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
【题目】某公司准备上市一款新型轿车零配件,上市之前拟在其一个下属4S店进行连续30天的试销.定价为1000元/件.试销结束后统计得到该4S店这30天内的日销售量(单位:件)的数据如下表:
日销售量 | 40 | 60 | 80 | 100 |
频数 | 9 | 12 | 6 | 3 |
(1)若该4S店试销期间每个零件的进价为650元/件,求试销连续30天中该零件日销售总利润不低于24500元的频率;
(2)试销结束后,这款零件正式上市,每个定价仍为1000元,但生产公司对该款零件不零售,只提供零件的整箱批发,大箱每箱有60件,批发价为550元/件;小箱每箱有45件,批发价为600元/件.该4S店决定每天批发两箱,根据公司规定,当天没销售出的零件按批发价的9折转给该公司的另一下属4S店.假设该4店试销后的连续30天的日销售量(单位:件)的数据如下表:
日销售量 | 50 | 70 | 90 | 110 |
频数 | 5 | 15 | 8 | 2 |
(ⅰ)设该4S店试销结束后连续30天每天批发两大箱,这30天这款零件的总利润;
(ⅱ)以总利润作为决策依据,该4S店试销结束后连续30天每天应该批发两大箱还是两小箱?
【题目】某科研小组为了研究一种治疗新冠肺炎患者的新药的效果,选50名患者服药一段时间后,记录了这些患者的生理指标
和
的数据,并统计得到如下的
列联表(不完整):
|
| 合计 | |
| 12 | 36 | |
| 7 | ||
合计 |
其中在生理指标
的人中,设
组为生理指标
的人,
组为生理指标
的人,他们服用这种药物后的康复时间(单位:天)记录如下:
组:10,11,12,13,14,15,16
组:12,13,15,16,17,14,25
(Ⅰ)填写上表,并判断是否有95%的把握认为患者的两项生理指标
和
有关系;
(Ⅱ)从
,
两组随机各选1人,
组选出的人记为甲,
组选出的人记为乙,求甲的康复时间比乙的康复时间长的概率.
附:
,其中
.
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |