题目内容
(2013•黄浦区二模)已知数列{an}具有性质:①a1为整数;②对于任意的正整数n,当an为偶数时,an+1=
;当an为奇数时,an+1=
.
(1)若a1为偶数,且a1,a2,a3成等差数列,求a1的值;
(2)设a1=2m+3(m>3且m∈N),数列{an}的前n项和为Sn,求证:Sn≤2m+1+3;
(3)若a1为正整数,求证:当n>1+log2a1(n∈N)时,都有an=0.
| an |
| 2 |
| an-1 |
| 2 |
(1)若a1为偶数,且a1,a2,a3成等差数列,求a1的值;
(2)设a1=2m+3(m>3且m∈N),数列{an}的前n项和为Sn,求证:Sn≤2m+1+3;
(3)若a1为正整数,求证:当n>1+log2a1(n∈N)时,都有an=0.
分析:(1)先设a1=2k,a2=k,得到a3=0,再分两种情况:k是奇数,若k是偶数,即可求出a1的值;
(2)根据题意知,当m>3时,Sn≤Sm+1=1+2+…+2m+4.再利用等比数列的求和公式即可证得结果;
(3)由于n>1+log2a1,从而n-1>log2a1,得出2n-1>a1由定义可得
≤
,利用累乘的形式有an=
•
•…•
•a1≤
a1,从而an<
•2n-1=1,再根据an∈N,得出当n>1+log2a1(n∈N)时,都有an=0.
(2)根据题意知,当m>3时,Sn≤Sm+1=1+2+…+2m+4.再利用等比数列的求和公式即可证得结果;
(3)由于n>1+log2a1,从而n-1>log2a1,得出2n-1>a1由定义可得
| an+1 |
| an |
| 1 |
| 2 |
| an |
| an-1 |
| an-1 |
| an-2 |
| a2 |
| a1 |
| 1 |
| 2n-1 |
| 1 |
| 2n-1 |
解答:解:(1)设a1=2k,a2=k,则:2k+a3=2k,a3=0
分两种情况:k是奇数,则a3=
=
=0,k=1,a1=2,a2=1,a3=0
若k是偶数,则a3=
=
=0,k=0,a1=0,a2=0,a3=0
(2)当m>3时,a1=2m+3,a2=2m-1+1,a3=2m-2,a4=2m-3,a5=2m-4,…,am=2,am+1=1,am+2=…=an=0
∴Sn≤1+1+3+2+22+23…+2m=5+
=2m+1 +3
(3)∵n>1+log2a1,∴n-1>log2a1,∴2n-1>a1
由定义可知:an+1=
≤
∴
≤
∴an=
•
•…•
•a1≤
a1
∴an<
•2n-1=1
∵an∈N,∴an=0,
综上可知:当n>1+log2a1(n∈N)时,都有an=0
分两种情况:k是奇数,则a3=
| a2-1 |
| 2 |
| k-1 |
| 2 |
若k是偶数,则a3=
| a2 |
| 2 |
| k |
| 2 |
(2)当m>3时,a1=2m+3,a2=2m-1+1,a3=2m-2,a4=2m-3,a5=2m-4,…,am=2,am+1=1,am+2=…=an=0
∴Sn≤1+1+3+2+22+23…+2m=5+
| 2(1-2m) |
| 1-2 |
(3)∵n>1+log2a1,∴n-1>log2a1,∴2n-1>a1
由定义可知:an+1=
|
| an |
| 2 |
∴
| an+1 |
| an |
| 1 |
| 2 |
∴an=
| an |
| an-1 |
| an-1 |
| an-2 |
| a2 |
| a1 |
| 1 |
| 2n-1 |
∴an<
| 1 |
| 2n-1 |
∵an∈N,∴an=0,
综上可知:当n>1+log2a1(n∈N)时,都有an=0
点评:本题主要考查了等差数列与等比数列的综合,同时考查了等比数列的通项公式、等比数列前n项求和公式,解题时要认真审题,仔细观察规律,避免错误,属于中档题.
练习册系列答案
相关题目