题目内容

如图,正方体ABCD-A1B1C1D1的棱长为1,线段AC1上有两个动点E,F,且EF=
3
3
.给出下列四个结论:
①BF∥CE;
②CE⊥BD;
③三棱锥E-BCF的体积为定值;
④△BEF在底面ABCD内的正投影是面积为定值的三角形;
其中,正确结论的个数是(  )
分析:①由BC与AC1为异面直线可判断①的正误;
②利用BD⊥平面ACC1,可判断②的正误;
③通过计算三棱锥E-BCF的体积可判断③;
④分析△BEF在底面ABCD内的正投影可判断④的正误.
解答:解:∵BC与AC1为异面直线,
∴BF与CE异面,故①错误;
对于②,∵ABCD-A1B1C1D1为棱长为1的正方体,
∴BD⊥平面ACC1,CE?平面ACC1
∴CE⊥BD,故②正确;
对于③,VE-BCF=VB-ECF=
1
3
×(
1
2
|BD|)•S△ECF=
1
6
×
2
•S△ECF
又在直角三角形ACC1中,点C到EF的距离为h=
6
3
,|EF|=
1
3
|AC1|=
3
3

∴S△ECF=
1
2
×
3
3
×
6
3
=
2
6

于是,VE-BCF为定值,故③正确;
对于④,EF在底面ABCD内的正投影在底面对角线AC上,其射影的长度为
1
3
|AC|,点B到AC的距离就是投影三角形的高,故△BEF在底面ABCD内的正投影是面积为定值的三角形,正确.
综上所述,正确选项为②③④.
故答案为:C.
点评:本题考查棱柱的结构特征,考查异面直线、线面垂直、正投影与射影概念的理解与应用,考查分析与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网