题目内容
如图,在正三棱柱ABC—A1B1C1中,AB=1.若二面角C-AB-C1的大小为60°,则点C到平面ABC1的距离为___________.![]()
答案: ![]()
解析:如图所示,
![]()
取AB中点M,则CM=
,C1M⊥AB,过C作CH⊥面ABC1,由题知点H落在C1M上,CH即为所求.
∠CMH为二面角C-AB-C1的平面角.
Rt△CHM中,sin∠CMH=sin60°=
,∴CH=
.
练习册系列答案
相关题目
A、
| ||||
B、
| ||||
C、
| ||||
| D、1 |
题目内容
如图,在正三棱柱ABC—A1B1C1中,AB=1.若二面角C-AB-C1的大小为60°,则点C到平面ABC1的距离为___________.![]()
答案: ![]()
解析:如图所示,
![]()
取AB中点M,则CM=
,C1M⊥AB,过C作CH⊥面ABC1,由题知点H落在C1M上,CH即为所求.
∠CMH为二面角C-AB-C1的平面角.
Rt△CHM中,sin∠CMH=sin60°=
,∴CH=
.
A、
| ||||
B、
| ||||
C、
| ||||
| D、1 |