题目内容

如图,在锥体P-ABCD中,ABCD是边长为1的菱形,且∠DAB=60°,PA=PD=,PB=2,E,F分别是BC,PC的中点
(1)证明:AD⊥平面DEF
(2)求二面角P-AD-B的余弦值.

【答案】分析:(1)利用线面垂直的判定定理进行证明是解决本题的关键,在平面DEF中找两条相交直线与AD垂直,利用60°角菱形的特征可以发现AD⊥DE,通过取出AD的中点构造一个平面可以证明AD⊥EF;
(2)利用(1)中的结论找到二面角P-AD-B的平面角是解决本题的关键,求角往往要利用三角形中的余弦定理.
解答:解:(1)取AD的中点G,连接PG,BG,在△ABG中,根据余弦定理可以算出BG=
发现AG2+BG2=AB2,可以得出AD⊥BG,又DE∥BG
∴DE⊥AD,
又PA=PD,可以得出AD⊥PG,而PG∩BG=G,
∴AD⊥平面PBG,而PB?平面PBG,
∴AD⊥PB,又PB∥EF,
∴AD⊥EF.又EF∩DE=E,∴AD⊥平面DEF.
(2)由(1)知,AD⊥平面PBG,所以∠PGB为二面角P-AD-B的平面角,在△PBG中,PG=,BG=,PB=2,由余弦定理得
cos∠PGB=,因此二面角P-AD-B的余弦值为
点评:本题考查立体几何中基本的线面关系,考查线面垂直的判定方法,考查二面角的求法,训练了学生基本的空间想象能力,考查学生的转化与化归思想,解三角形的基本知识和学生的运算能力,属于基本的立体几何题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网