题目内容
(2012•四川)已知函数f(x)=cos2
-sin
cos
-
.
(Ⅰ)求函数f(x)的最小正周期和值域;
(Ⅱ)若f(α)=
,求sin2α的值.
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
| 1 |
| 2 |
(Ⅰ)求函数f(x)的最小正周期和值域;
(Ⅱ)若f(α)=
3
| ||
| 10 |
分析:(Ⅰ)将f(x)=cos2
-sin
cos
-
化为f(x)=
cos(x+
)即可求得f(x)的最小正周期和值域;
(Ⅱ)由f(α)=
可求得cos(α+
)=
,由余弦函数的二倍角公式与诱导公式可求得sin2α的值.
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 4 |
(Ⅱ)由f(α)=
3
| ||
| 10 |
| π |
| 4 |
| 3 |
| 5 |
解答:解:(Ⅰ)由已知,f(x)=cos2
-sin
cos
-
=
(1+cosx)-
sinx-
=
cos(x+
).
∴函数f(x)的最小正周期为2π,值域为[-
,
];…6分
(Ⅱ)由(Ⅰ)知,f(α)=
cos(α+
)=
,
∴cos(α+
)=
,
∴sin2α=-cos(
+2α)=-cos2(α+
)
=1-2cos2(α+
)
=1-
=
…12分
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| ||
| 2 |
| π |
| 4 |
∴函数f(x)的最小正周期为2π,值域为[-
| ||
| 2 |
| ||
| 2 |
(Ⅱ)由(Ⅰ)知,f(α)=
| ||
| 2 |
| π |
| 4 |
3
| ||
| 10 |
∴cos(α+
| π |
| 4 |
| 3 |
| 5 |
∴sin2α=-cos(
| π |
| 2 |
| π |
| 4 |
=1-2cos2(α+
| π |
| 4 |
=1-
| 18 |
| 25 |
=
| 7 |
| 25 |
点评:本题考查三角函数的性质、两角和的正(余)弦公式等基础知识,考查运算能力,考查化归与转化等数学思想,属于中档题.
练习册系列答案
相关题目