题目内容

已知函数f(x)=x3+(1-a)x2-a(a+2)x(a∈R),f′(x)为f(x)的导数.
(I)当a=-3时证明y=f(x)在区间(-1,1)上不是单调函数.
(II)设g(x)=
19
6
x-
1
3
,是否存在实数a,对于任意的x1∈[-1,1]存在x2∈[0,2],使得f′(x1)+2ax1=g(x2)成立?若存在求出a的取值范围;若不存在说明理由.
分析:(1)证明y=f(x)在区间(-1,1)上不是单调函数,先求函数导函数,判断导函数的函数值在区间内不同号;
(2)令F(x)=f(x)+2ax,判断是否存在实数a,对于任意的x1∈[-1,1]存在x2∈[0,2],使得f'(x1)+2ax1=g(x2)成立,转化成求g(x)=
19
6
x-
1
3
在[0,2]内的值域,然后使函数
F(x)的值域为g(x)值域的子集.
解答:解:(1)当a=3时,f(x)=x3+4x2-3x,f(x)=3x2+8x-3,由f(x)=0,即3x2+8x-3=0,得x1=-3,x2=
1
3

-1<x<
1
3
时,f(x)<0,所以f(x)在(-1,
1
3
)上为减函数,在(
1
3
,1)上导数为正,函数为增函数,
所以,f(x)在(-1,1)上不是单调函数.
(2)因为g(x)=
19
6
x-
1
3
在[0,2]上为增函数,所以g(x)∈[-
1
3
,6].
令F(x)=f(x)+2ax=3x2+2(1-a)x-a(a+2)+2ax=3x2+2x-a2-2a
若存在实数a,对于任意的x1∈[-1,1]存在x2∈[0,2],使得f'(x1)+2ax1=g(x2)成立,则对任意x∈[-1,1],有F(x)min≥-
1
3
,F(x)max≤6.
对于函数F(x)=3x2+2x-a2-2a,F(x)min=F(-
1
3
)
=3×(-
1
3
)2+2×(-
1
3
)-a2-2a
=-a2-2a-
1
3
,F(x)max=5-a2-2a.
联立
-a2-2a-
1
3
≥-
1
3
5-a2-2a≤6
解得:-2≤a≤0.
点评:本题(1)主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减;
(2)考查了导数的综合运用,解答的关键是如何搭桥,把看似无关的两个变量的取值问题,转化成两函数的值域之间的包含关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网