题目内容
已知数列{an}中,a1=
,点(n,2an+1-an)(n∈N*)在直线y=x上,
(Ⅰ)计算a2,a3,a4的值;
(Ⅱ)令bn=an+1-an-1,求证:数列{bn}是等比数列;
(Ⅲ)设Sn、Tn分别为数列{an}、{bn}的前n项和,是否存在实数λ,使得数列{
}为等差数列?若存在,试求出λ的值;若不存在,请说明理由.
| 1 |
| 2 |
(Ⅰ)计算a2,a3,a4的值;
(Ⅱ)令bn=an+1-an-1,求证:数列{bn}是等比数列;
(Ⅲ)设Sn、Tn分别为数列{an}、{bn}的前n项和,是否存在实数λ,使得数列{
| Sn+λTn |
| n |
(Ⅰ)由题意,∵点(n,2an+1-an)在直线y=x上,
∴2an+1-an=n
∵a1=
,∴a2=
,
同理,a3=
,a4=
;
(Ⅱ)证明:∵bn=an+1-an-1,2an+1-an=n
∴bn+1=an+2-an+1-1=
-an+1-1=
(an+1-an-1)=
bn,
∵b1=a2-a1-1=-
∴数列{bn}是以-
为首项,
为公比的等比数列;
(Ⅲ)存在λ=2,使数列{
}是等差数列.
由(Ⅱ)知,bn=-3×(
)n+1,Tn=3×(
)n+1-
,
∵an+1=n-1-bn=n-1+3×(
)n+1,∴an=n-2+3×(
)n,
∴Sn=
-2n+3×
=
+3-
由题意,要使数列{
}是等差数列,则2×
=
+
∴2×
=
-
λ+
,∴λ=2
当λ=2时,
=
,数列是等差数列
∴当且仅当λ=2时,数列是等差数列.
∴2an+1-an=n
∵a1=
| 1 |
| 2 |
| 3 |
| 4 |
同理,a3=
| 11 |
| 8 |
| 35 |
| 16 |
(Ⅱ)证明:∵bn=an+1-an-1,2an+1-an=n
∴bn+1=an+2-an+1-1=
| an+1+n+1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∵b1=a2-a1-1=-
| 3 |
| 4 |
∴数列{bn}是以-
| 3 |
| 4 |
| 1 |
| 2 |
(Ⅲ)存在λ=2,使数列{
| Sn+λTn |
| n |
由(Ⅱ)知,bn=-3×(
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
∵an+1=n-1-bn=n-1+3×(
| 1 |
| 2 |
| 1 |
| 2 |
∴Sn=
| n(n+1) |
| 2 |
| ||||
1-
|
| n2-3n |
| 2 |
| 3 |
| 2n |
由题意,要使数列{
| Sn+λTn |
| n |
| S2+λT2 |
| 2 |
| S1+λT1 |
| 1 |
| S3+λT3 |
| 3 |
∴2×
| 10-9λ |
| 16 |
| 1 |
| 2 |
| 3 |
| 4 |
| 42-21λ |
| 48 |
当λ=2时,
| Sn+λTn |
| n |
| n-3 |
| 2 |
∴当且仅当λ=2时,数列是等差数列.
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|