题目内容
某班拟从两名同学中选一人参加学校知识竞赛,现设计一个预选方案:选手从五道题中一次性随机抽取三道进行回答,已知甲五道题中只会三道,乙每道题答对的概率都是3/5,且每道题答对与否互不影响.(1)分别求出甲乙两人答对题数的概率分布;(2)你认为派谁参加比赛更合适.
分析:(1)设甲、乙答对的题数分别是ξ,η,ξ的可能取值为1,2,3,p(ξ=1)=
=
,p(ξ=2)=
=
,p(ξ=3)=
=
.由此能求出ξ的分布列.
η的可能取值为0,1,2,3,p(η=0)=(
)3=
,p(η=1)=
(
) (
)2=
,p(η=2)=
(
)2(
) =
,p(η=3)=(
)3 =
,由此能求出η的分布列.
(2)由Eξ=Eη=
,Dξ=
<Dη=
,知选派甲更合适.
| ||||
|
| 3 |
| 10 |
| ||||
|
| 3 |
| 5 |
| ||
|
| 1 |
| 10 |
η的可能取值为0,1,2,3,p(η=0)=(
| 2 |
| 5 |
| 8 |
| 125 |
| C | 1 3 |
| 3 |
| 5 |
| 2 |
| 5 |
| 36 |
| 125 |
| C | 2 3 |
| 3 |
| 5 |
| 2 |
| 5 |
| 54 |
| 125 |
| 3 |
| 5 |
| 27 |
| 125 |
(2)由Eξ=Eη=
| 9 |
| 5 |
| 9 |
| 25 |
| 18 |
| 25 |
解答:解:(1)设甲、乙答对的题数分别是ξ,η,
ξ的可能取值为1,2,3,
p(ξ=1)=
=
,
p(ξ=2)=
=
,
p(ξ=3)=
=
.
∴ξ的分布列为
η的可能取值为0,1,2,3,
p(η=0)=(
)3=
,
p(η=1)=
(
) (
)2=
,
p(η=2)=
(
)2(
) =
,
p(η=3)=(
)3 =
,
(2)Eξ=1×
+2×
+3×
=
,
Dξ=(1-
)2×
+(2-
)2×
+(3-
)2×
=
,
Eη=0×
+1×
+2×
+3×
=
,
Dη=(0-
)2×
+(1-
)2×
+(2-
)2×
+(3-
)2×
=
.
∵Eξ=Eη=
,Dξ=
<Dη=
,
∴选派甲更合适.
ξ的可能取值为1,2,3,
p(ξ=1)=
| ||||
|
| 3 |
| 10 |
p(ξ=2)=
| ||||
|
| 3 |
| 5 |
p(ξ=3)=
| ||
|
| 1 |
| 10 |
∴ξ的分布列为
| ξ | 1 | 2 | 3 | ||||||
| P |
|
|
|
p(η=0)=(
| 2 |
| 5 |
| 8 |
| 125 |
p(η=1)=
| C | 1 3 |
| 3 |
| 5 |
| 2 |
| 5 |
| 36 |
| 125 |
p(η=2)=
| C | 2 3 |
| 3 |
| 5 |
| 2 |
| 5 |
| 54 |
| 125 |
p(η=3)=(
| 3 |
| 5 |
| 27 |
| 125 |
| η | 0 | 1 | 2 | 3 | ||||||||
| P |
|
|
|
|
| 3 |
| 10 |
| 3 |
| 5 |
| 1 |
| 10 |
| 9 |
| 5 |
Dξ=(1-
| 9 |
| 5 |
| 3 |
| 10 |
| 9 |
| 5 |
| 3 |
| 5 |
| 9 |
| 5 |
| 1 |
| 10 |
| 9 |
| 25 |
Eη=0×
| 8 |
| 125 |
| 36 |
| 125 |
| 54 |
| 125 |
| 27 |
| 125 |
| 9 |
| 5 |
Dη=(0-
| 9 |
| 5 |
| 8 |
| 125 |
| 9 |
| 5 |
| 36 |
| 125 |
| 9 |
| 5 |
| 54 |
| 125 |
| 9 |
| 5 |
| 27 |
| 125 |
| 18 |
| 25 |
∵Eξ=Eη=
| 9 |
| 5 |
| 9 |
| 25 |
| 18 |
| 25 |
∴选派甲更合适.
点评:本题考查离散型随机变量的期望和方差,解题时要注意n次独立重复试验恰好发生k次概率公式的灵活运用.
练习册系列答案
相关题目