ÌâÄ¿ÄÚÈÝ

12£®ÒÑÖªÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÔÚ¼«
×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣩÖУ¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=4$\sqrt{2}$cos£¨¦È+$\frac{¦Ð}{4}$£©£®
£¨¢ñ£©½«Ô²CµÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÈôÖ±ÏßlÓëÔ²CÏཻÓÚA£¬BÁ½µã£¬µãPµÄ×ø±êΪ£¨2£¬0£©£¬ÊÔÇó$\frac{1}{|PA|}$+$\frac{1}{|PB|}$µÄÖµ£®

·ÖÎö £¨I£©Ô²CµÄ¼«×ø±ê·½³Ì¦Ñ=4cos¦È-4sin¦È£¬»¯Îª¦Ñ2=4¦Ñcos¦È-4¦Ñsin¦È£®ÀûÓà $\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$¼´¿ÉµÃ³öÖ±½Ç×ø±ê·½³Ì£®
£¨II£©°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì´úÈëÔ²µÄÖ±½Ç×ø±ê·½³Ì¿ÉµÃt${\;}^{2}+2\sqrt{2}t-4=0$£¬¿ÉµÃ¸ùÓëϵÊýµÄ¹ØÏµ£¬¿ÉµÃ$\frac{1}{|PA|}$+$\frac{1}{|PB|}$=$\frac{1}{|{t}_{1}|}+\frac{1}{|{t}_{2}|}=\frac{|{t}_{1}|+|{t}_{2}|}{|{t}_{1}{t}_{2}|}$£¬¼´¿ÉµÃ½â£®

½â´ð ½â£º£¨¢ñ£©ÓɦÑ=4$\sqrt{2}$cos£¨¦È+$\frac{¦Ð}{4}$£©µÃ£¬¦Ñ=4cos¦È-4sin¦È£¬
ËùÒÔ¦Ñ2=4¦Ñcos¦È-4¦Ñsin¦È£¬
¡àx2+y2=4x-4y£¬
¼´Ô²CµÄÖ±½Ç×ø±êϵ·½³ÌΪ£º£¨x-2£©2+£¨y+2£©2=8    ¢Ù
£¨¢ò£©ÉèA£¬BÁ½µã¶ÔÓ¦µÄ²ÎÊýΪt1£¬t2£¬$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$Óë¢ÙʽÁªÁ¢µÃ
t${\;}^{2}+2\sqrt{2}t-4=0$£¬
ËùÒÔt1+t2=-2$\sqrt{2}$£¬t1t2=-4£¼0£¬
¸ù¾Ý²ÎÊýtµÄÒâÒå¿ÉÖª£º$\frac{1}{|PA|}$+$\frac{1}{|PB|}$=$\frac{1}{|{t}_{1}|}+\frac{1}{|{t}_{2}|}=\frac{|{t}_{1}|+|{t}_{2}|}{|{t}_{1}{t}_{2}|}$=$\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$=$\frac{\sqrt{£¨{t}_{1}+{t}_{2}£©^{2}-4{t}_{1}{t}_{2}}}{|{t}_{1}{t}_{2}|}$=$\frac{\sqrt{6}}{2}$£®

µãÆÀ ±¾Ì⿼²éÁËÖ±ÏߵIJÎÊý·½³Ì¼°ÆäÓ¦Óᢼ«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø