题目内容
已知数列{xn}、{yn},xn+1=
,yn=
.
(1){yn}是否为等差数列?说明理由;
(2)Sn是{yn}前n项和,Tn是{
}前n项和,求
.
| 2xn+1 |
| -xn |
| xn-1 |
| xn+1 |
(1){yn}是否为等差数列?说明理由;
(2)Sn是{yn}前n项和,Tn是{
| 1 |
| xn+1 |
| lim |
| n→∞ |
| Sn |
| Tn |
分析:(1)求差yn+1-yn,利用xn+1=
,yn=
. 即可得结论;
(2)先根据yn=
=1-
,表示出Sn,进而可解.
| 2xn+1 |
| -xn |
| xn-1 |
| xn+1 |
(2)先根据yn=
| xn-1 |
| xn+1 |
| 2 |
| xn+1 |
解答:解:(1)由题意,yn+1-yn=
-
=
-
=2,∴{yn}是等差数列;
(2)∵yn=
=1-
∴Sn=n-2Tn
∵Sn=ny1+n(n-1)
∴Tn=n-
n-
n2
∴
=
∴
=-2
| xn+1-1 |
| xn+1+1 |
| xn-1 |
| xn+1 |
| 3xn+1 |
| xn+1 |
| xn-1 |
| xn+1 |
(2)∵yn=
| xn-1 |
| xn+1 |
| 2 |
| xn+1 |
∴Sn=n-2Tn
∵Sn=ny1+n(n-1)
∴Tn=n-
| y1 |
| 2 |
| 1 |
| 2 |
∴
| Sn |
| Tn |
| y1+n-1 | ||||
1-
|
∴
| lim |
| n→∞ |
| sn |
| Tn |
点评:本题的考点是数列的极限,主要考查等差数列,考查数列极限的求法,关键是利用等差数列的定义,求数列极限的基本方法.
练习册系列答案
相关题目