题目内容
(1)求证:AA1⊥BD;
(2)若面A1DB⊥面DC1B,求侧棱AA1之长.
分析:(1)要证线线垂直,关键是证明线面垂直,利用面面垂直可得线面垂直,故可证;
(2)由于面A1DB⊥面DC1B,△ABC是等腰三角形,D为底边AC上中点,可知∠A1DC1是二面角A1-OB-C1的平面角为Rt∠,再将平面A1ACC1放在平面坐标系中,可求.
(2)由于面A1DB⊥面DC1B,△ABC是等腰三角形,D为底边AC上中点,可知∠A1DC1是二面角A1-OB-C1的平面角为Rt∠,再将平面A1ACC1放在平面坐标系中,可求.
解答:证明:(1)在斜三棱柱ABC-A1B1C1中,因为A1在底面ABC上射影落在AC上,则平面A1ACC1经过底面ABC的垂线
故侧面A1C⊥面ABC.
又 BD为等腰△ABC底边AC上中线,则BD⊥AC,从而BD⊥面AC.
∴BD⊥面A1C
又AA1?面A1C,∴AA1⊥BD
(2)解:在底面ABC,△ABC是等腰三角形,D为底边AC上中点,故DB⊥AC,又面ABC⊥面A1C
∴DB⊥面A1C,则DB⊥DA1,DB⊥DC1,则∠A1DC1是二面角A1-OB-C1的平面角
∵面A1DB⊥面DC1B,则∠A1DC1=Rt∠,将平面A1ACC1放在平面坐标系中(如图),

∵侧棱AA1和底面成60°,
设A1A=a,则A1=(
,
a),C1(
+2
,
a) A(0,0),C(2
,0),AC中点D(
,0),
由
•
=0知:(
-
,
a)•(
+
,
a)=0,∴a2=3,a=
故所求侧棱AA1长为
故侧面A1C⊥面ABC.
又 BD为等腰△ABC底边AC上中线,则BD⊥AC,从而BD⊥面AC.
∴BD⊥面A1C
又AA1?面A1C,∴AA1⊥BD
(2)解:在底面ABC,△ABC是等腰三角形,D为底边AC上中点,故DB⊥AC,又面ABC⊥面A1C
∴DB⊥面A1C,则DB⊥DA1,DB⊥DC1,则∠A1DC1是二面角A1-OB-C1的平面角
∵面A1DB⊥面DC1B,则∠A1DC1=Rt∠,将平面A1ACC1放在平面坐标系中(如图),
∵侧棱AA1和底面成60°,
设A1A=a,则A1=(
| a |
| 2 |
| ||
| 2 |
| a |
| 2 |
| 3 |
| ||
| 2 |
| 3 |
| 3 |
由
| A1D |
| DC1 |
| a |
| 2 |
| 3 |
| ||
| 2 |
| a |
| 2 |
| 3 |
| ||
| 2 |
| 3 |
故所求侧棱AA1长为
| 3 |
点评:本题的考点是点、线、面间的距离计算,考查平面与平面垂直的性质,二面角及其度量,考查计算能力,逻辑思维能力,转化思想.
练习册系列答案
相关题目