题目内容
设函数f(x)=sin(x+
)+2sin2
.
(1)求f(x)的最小正周期;
(2)记△ABC的内角A,B,C的对边分别为a,b,c,若f(A)=1,a=1,c=
,求b值.
| π |
| 6 |
| x |
| 2 |
(1)求f(x)的最小正周期;
(2)记△ABC的内角A,B,C的对边分别为a,b,c,若f(A)=1,a=1,c=
| 3 |
(1)f(x)=sin(x+
)+2sin2
=
sinx+
cosx+1-cosx=
sinx-
cosx+1=sin(x-
)+1,∴f(x)的最小正周期T=2π.
(2)由f(A)=1得sin(A-
)=0,
∵-
<A-
<
,∴A-
=0,故A=
.
解法1:由余弦定理a2=b2+c2-2bcosA,
得b2-2b+2=0,解得b=1或2.
解法2:由正弦定理
=
,得
=
,所以sinC=
,则C=
或
.
当C=
,B=
,从而b=
=2.
当C=
时,B=
,又A=
,从而a=b=1.
故b的值为1或2.
| π |
| 6 |
| x |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| π |
| 6 |
(2)由f(A)=1得sin(A-
| π |
| 6 |
∵-
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
| π |
| 6 |
| π |
| 6 |
解法1:由余弦定理a2=b2+c2-2bcosA,
得b2-2b+2=0,解得b=1或2.
解法2:由正弦定理
| a |
| sinA |
| B |
| sinB |
| 1 | ||
|
| ||
| sinC |
| ||
| 2 |
| π |
| 3 |
| 2π |
| 3 |
当C=
| π |
| 3 |
| π |
| 2 |
| b2+c2 |
当C=
| 2π |
| 3 |
| π |
| 6 |
| π |
| 6 |
故b的值为1或2.
练习册系列答案
相关题目
设函数f(x)=|sin(x+
)|(x∈R),则f(x)( )
| π |
| 3 |
A、在区间[
| ||||
B、在区间[-π,-
| ||||
C、在区间[
| ||||
D、在区间[
|