题目内容

抛物线y2=4x的焦点为F,准线为l,l与x轴相交于点E,过点F且倾斜角等于60°的直线与抛物线在x轴上方的部分相交于点A,AB⊥l,垂足为B,则四边形ABEF的面积等于(    )

A.3              B.4             C.6             D.8

答案:C  由抛物线y2=4x知F(1,0),E(-1,0),则过点F,倾斜角为60°的直线方程为y=(x-1),与抛物线方程联立,解得A(3,2),故|AB|=4.

又因为|EF|=2,|EB|=2,所以S四边形ABEF=(|EF|+|AB|)·|EB|=×6×2=6.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网