题目内容
学校文娱队中的每位队员唱歌、跳舞至少会一项,已知会唱歌的有5人,会跳舞的有7人,现从中随机选出3人.记X为选出的3人中既会唱歌又会跳舞的人数,且P(X≥1)=
.
(Ⅰ)求学校文娱队中既会唱歌又会跳舞的人数;
(Ⅱ)求选出的3人中1人会唱歌2人会跳舞的概率.
| 8 |
| 15 |
(Ⅰ)求学校文娱队中既会唱歌又会跳舞的人数;
(Ⅱ)求选出的3人中1人会唱歌2人会跳舞的概率.
(Ⅰ)设学校文娱队中既会唱歌又会跳舞的人数为n,则文娱队共有12-n个人,其中只会唱歌或只会跳舞一项的人数为12-2n人. …(2分)
由 P(X≥1)=
,得 1-P(X=0)=
,所以 P(X=0)=
. …(4分)
所以
=
,…(6分)
即
=
.
注意到12-2n≥3,且n是整数,从而n=0,1,2,3,4.
将n的这5个值代入上式检验,得n=2符合题意,所以学校文娱队中既会唱歌又会跳舞的有2人. …(8分)
(Ⅱ)由(Ⅰ)知学校文娱队的人数为10人,其中只会唱歌的有3人,只会跳舞的有5人,既会唱歌又会跳舞的有2人. …(9分)
设“选出的3人中1人会唱歌2人会跳舞”为事件A,…(10分)
所以,P(A)=
=
. …(13分)
由 P(X≥1)=
| 8 |
| 15 |
| 8 |
| 15 |
| 7 |
| 15 |
所以
| ||
|
| 7 |
| 15 |
即
| (12-2n)(11-2n)(10-2n) |
| (12-n)(11-n)(10-n) |
| 7 |
| 15 |
注意到12-2n≥3,且n是整数,从而n=0,1,2,3,4.
将n的这5个值代入上式检验,得n=2符合题意,所以学校文娱队中既会唱歌又会跳舞的有2人. …(8分)
(Ⅱ)由(Ⅰ)知学校文娱队的人数为10人,其中只会唱歌的有3人,只会跳舞的有5人,既会唱歌又会跳舞的有2人. …(9分)
设“选出的3人中1人会唱歌2人会跳舞”为事件A,…(10分)
所以,P(A)=
| ||||||||||||
|
| 11 |
| 15 |
练习册系列答案
相关题目