题目内容
已知数列{an}中,a1=1,nan+1=2(a1+a2+…+an)
(1)求a2,a3,a4;
(2)求数列{an}的通项an;
(3)设数列{bn}满足b1=
,bn+1=
+bn,证明:①(
-
>-
; ②bn<1.
(1)求a2,a3,a4;
(2)求数列{an}的通项an;
(3)设数列{bn}满足b1=
| 1 |
| 2 |
| ||
| (an+1)2 |
| 1 |
| bn+1 |
| 1 |
| bn |
| 1 |
| (n+1)2 |
分析:(1)由数列{an}中,a1=1,nan+1=2(a1+a2+…+an),分别令n=1,2,3,能求出a2,a3,a4.
(2)由nan+1=2(a1+a2+…+an),得(n-1)an=2(a1+a2++an-1),二者相减得到nan+1=(n+1)an,由此能求出an.
(3)①由(2)得:b1=
,bn+1=
+bn>bn>bn-1>…>b1>0,所以数列{bn}是正项单调递增数列,由此能够证明
-
>-
.
②当n=1时,b1=
<1显然成立.当n≥2时,
=(
-
)+…+(
-
)+
>-(1-
)+2=1+
=
,所以bn<
<1,由此能够证明bn<1成立.
(2)由nan+1=2(a1+a2+…+an),得(n-1)an=2(a1+a2++an-1),二者相减得到nan+1=(n+1)an,由此能求出an.
(3)①由(2)得:b1=
| 1 |
| 2 |
| ||
| (an+1)2 |
| 1 |
| bn+1 |
| 1 |
| bn |
| 1 |
| (n+1)2 |
②当n=1时,b1=
| 1 |
| 2 |
| 1 |
| bn |
| 1 |
| bn |
| 1 |
| bn-1 |
| 1 |
| b2 |
| 1 |
| b1 |
| 1 |
| b1 |
| 1 |
| n |
| 1 |
| n |
| n+1 |
| n |
| n |
| n+1 |
解答:(1)解:∵a1=1,nan+1=2(a1+a2+…+an),
∴a2=2a1=2,
2a3=2(a1+a2)=6,a3=3,
3a4=2(a1+a2+a3)=12,a4=4;(3分)
(2)解:nan+1=2(a1+a2++an)①
(n-1)an=2(a1+a2+…+an-1)②
①-②得nan+1-(n-1)an=2an,
即:nan+1=(n+1)an,
=
(6分)
所以an=a1
=1
=n(n≥2)
所以an=n(n∈N*);(8分)
(3)证明:①由(2)得:
b1=
,bn+1=
+bn>bn>bn-1>…>b1>0,
所以数列{bn}是正项单调递增数列,(10分)
当n≥1,bn+1=
+bn<
bnbn+1+bn,
所以
-
>-
,(12分)
②1°当n=1时,b1=
<1显然成立.
2°当n≥2时,
=(
-
)+…+(
-
)+
>-(
+
+
)+2
>-(
+
+
)+2
=-(
-
+
-
+
-
)+2
=-(1-
)+2=1+
=
,所以bn<
<1,
综上可知,bn<1成立.(14分)
∴a2=2a1=2,
2a3=2(a1+a2)=6,a3=3,
3a4=2(a1+a2+a3)=12,a4=4;(3分)
(2)解:nan+1=2(a1+a2++an)①
(n-1)an=2(a1+a2+…+an-1)②
①-②得nan+1-(n-1)an=2an,
即:nan+1=(n+1)an,
| an+1 |
| an |
| n+1 |
| n |
所以an=a1
| a2 |
| a1 |
| a3 |
| a2 |
| an |
| an-1 |
| 2 |
| 1 |
| 3 |
| 2 |
| n |
| n-1 |
所以an=n(n∈N*);(8分)
(3)证明:①由(2)得:
b1=
| 1 |
| 2 |
| ||
| (an+1)2 |
所以数列{bn}是正项单调递增数列,(10分)
当n≥1,bn+1=
| ||
| (n+1)2 |
| 1 |
| (n+1)2 |
所以
| 1 |
| bn+1 |
| 1 |
| bn |
| 1 |
| (n+1)2 |
②1°当n=1时,b1=
| 1 |
| 2 |
2°当n≥2时,
| 1 |
| bn |
| 1 |
| bn |
| 1 |
| bn-1 |
| 1 |
| b2 |
| 1 |
| b1 |
| 1 |
| b1 |
>-(
| 1 |
| n2 |
| 1 |
| (n-1)2 |
| 1 |
| 22 |
>-(
| 1 |
| n(n-1) |
| 1 |
| (n-1)(n-2) |
| 1 |
| 2×1 |
=-(
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n-2 |
| 1 |
| n-1 |
| 1 |
| 1 |
| 1 |
| 2 |
=-(1-
| 1 |
| n |
| 1 |
| n |
| n+1 |
| n |
| n |
| n+1 |
综上可知,bn<1成立.(14分)
点评:本题考查数列的通项公式的求法,考查不等式的证明.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答,注意迭代法和放缩法的灵活运用.
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|