题目内容

已知向量a=(cos,sin),b=(cos,-sin),x∈[,],

(1)求a·b及|a+b|;

(2)求函数f(x)=(λ∈R且λ≠0)的最小值.

解:(1)a·b=coscos+sinx(-sin)=cos(+)=cos2x.

∵a+b=(cos+cos,sin-sin),

又∵x∈[,],∴|a+b|=2cosx.

(2)f(x)=,

又∵x∈[,],∴≤cosx≤.

∵g(t)=t-t在t>0为增函数.

∴当λ>0时,cosx=时,f(x)取得最小值0;当λ<0时,cosx=时,f(x)取得最小值λ


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网