题目内容

1.在正方体ABCD-A1B1C1D1中,过DD1的中点作直线l,使得l与BD1所成角为40°,且与平面A1ACC1所成角为50°,则l的条数为(  )
A.1B.2C.3D.无数

分析 取DD1的中点P,A1C1的中点为O1,AC的中点为O2,O1O2的中点为O,连结OP和PO2,则OP⊥平面ACC1A1,PO2∥BD1.在平面ACC1A1内,以点O为圆心,半径为$\frac{\frac{\sqrt{2}}{2}}{tan50°}$画圆,即可得出结论.

解答 解:取DD1的中点P,A1C1的中点为O1,AC的中点为O2,O1O2的中点为O,连结OP和PO2,则OP⊥平面ACC1A1,PO2∥BD1
在平面ACC1A1内,以点O为圆心,半径为$\frac{\frac{\sqrt{2}}{2}}{tan50°}$画圆,则点P与此圆上的点的连线满足:过DD1的中点P与平面ACC1A1所成的角为50°.所以满足与PO2所成角为40°的直线PQ有且只有2条,
故选:B.

点评 本题考查线面角,考查学生分析解决问题的能力,有难度.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网