题目内容
若lg(x-y)+lg(x+2y)=lg2+lgx+lgy,求
的值.
| x |
| y |
∵lg(x-y)+lg(x+2y)=lg2+lgx+lgy,∴lg(x-y)(x+2y)=lg2xy.
∴(x-y)(x+2y)=2xy,即 (x-2y)(x+y)=0.
再由x、y都是正数可得x+y≠0,∴x-2y=0,
∴
=2.
∴(x-y)(x+2y)=2xy,即 (x-2y)(x+y)=0.
再由x、y都是正数可得x+y≠0,∴x-2y=0,
∴
| x |
| y |
练习册系列答案
相关题目