题目内容

若lg(x-y)+lg(x+2y)=lg2+lgx+lgy,求
x
y
的值.
∵lg(x-y)+lg(x+2y)=lg2+lgx+lgy,∴lg(x-y)(x+2y)=lg2xy.
∴(x-y)(x+2y)=2xy,即 (x-2y)(x+y)=0.
再由x、y都是正数可得x+y≠0,∴x-2y=0,
x
y
=2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网