ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf£¨x£©=xk+b£¨³£Êýk£¬b¡ÊR£©µÄͼÏó¹ýµã£¨4£¬2£©¡¢£¨16£¬4£©Á½µã£®£¨1£©Çóf£¨x£©µÄ½âÎöʽ£»
£¨2£©Èôº¯Êýg£¨x£©µÄͼÏóÓ뺯Êýf£¨x£©µÄͼÏó¹ØÓÚÖ±Ïßy=x¶Ô³Æ£¬Èô²»µÈʽg£¨x£©+g£¨x-2£©£¾2ax+2ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨3£©ÈôP1£¬P2£¬P3£¬¡£¬Pn£¬¡ÊǺ¯Êýf£¨x£©Í¼ÏóÉϵĵãÁУ¬Q1£¬Q2£¬Q3£¬¡£¬Qn£¬¡ÊÇxÕý°ëÖáÉϵĵãÁУ¬OÎª×ø±êԵ㣬¡÷OQ1P1£¬¡÷Q1Q2P2£¬¡£¬¡÷Qn-1QnPn£¬¡ÊÇһϵÁÐÕýÈý½ÇÐΣ¬¼ÇËüÃǵı߳¤ÊÇa1£¬a2£¬a3£¬¡£¬an£¬¡£¬Ì½ÇóÊýÁÐanµÄͨÏʽ£¬²¢ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©½«£¨4£¬2£©¡¢£¨16£¬4£©Á½µã×ø±ê´úÈ뺯Êýf£¨x£©=xk+bÖУ¬¼´¿ÉÇó³ök¡¢bµÄÖµ£¬½ø¶øÇóµÃº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨2£©¸ù¾ÝÇ°ÃæÇóµÃµÄf£¨x£©µÄ½âÎöʽºÍÌâÖÐÒÑÖªÌõ¼þ¿ÉÖªº¯Êýg£¨x£©µÄ½âÎöʽ£¬Áîg£¨x£©+g£¨x-2£©£¼2ax+2£¬±ã¿ÉÇó³öaµÄȡֵ·¶Î§£»
£¨3£©¸ù¾ÝÇ°ÃæÇóµÃµÄº¯Êý½áºÏÌâÖÐÒÑÖªÌõ¼þ±ã¿ÉÇó³öanÓëan+1µÄ¹ØÏµ£¬±ã¿ÉÇóµÃÊýÁÐanµÄͨÏʽ£®
£¨2£©¸ù¾ÝÇ°ÃæÇóµÃµÄf£¨x£©µÄ½âÎöʽºÍÌâÖÐÒÑÖªÌõ¼þ¿ÉÖªº¯Êýg£¨x£©µÄ½âÎöʽ£¬Áîg£¨x£©+g£¨x-2£©£¼2ax+2£¬±ã¿ÉÇó³öaµÄȡֵ·¶Î§£»
£¨3£©¸ù¾ÝÇ°ÃæÇóµÃµÄº¯Êý½áºÏÌâÖÐÒÑÖªÌõ¼þ±ã¿ÉÇó³öanÓëan+1µÄ¹ØÏµ£¬±ã¿ÉÇóµÃÊýÁÐanµÄͨÏʽ£®
½â´ð£º½â£º£¨1£©
?b=0£¬k=
?f(x)=
£¨2£©g£¨x£©=x2£¨x¡Ý0£©
g£¨x£©+g£¨x-2£©£¾2ax+2
?
ÔÎÊÌâµÈ¼ÛÓÚa£¼x+
-2ÔÚx¡Ê[2£¬+¡Þ£©ºã³ÉÁ¢£¬
ÀûÓú¯Êýy=x+
-2ÔÚÇø¼ä[2£¬+¡Þ£©ÉÏΪÔöº¯Êý£¬
¿ÉµÃa£¼
£»
£¨3£©ÓÉ
?x=
?a1=
£¬
ÓÉ
?
x-
-
Sn-1=0?x=
£¬
½«x´úÈëan=2(x-Sn-1)=
+
£¬
¡à(an-
)2=
•(1+12Sn-1)ÇÒa1=
£¬
ÓÖ(an+1-
)2=
•(1+12Sn)£¬
Á½Ê½Ïà¼õ¿ÉµÃ£º(an+1-
)2-(an-
)2=
an?(an+1-
)2=(an+
)2?(an+1+an)(an+1-an-
)=0£¬
ÓÖ£¬ÒòΪan£¾0£¬ËùÒÔan+1-an-
=0£¬
´Ó¶øanÊÇÒÔ
ΪÊ×Ï
Ϊ¹«²îµÄµÈ²îÊýÁУ¬¼´an=
£®
|
?b=0£¬k=
| 1 |
| 2 |
?f(x)=
| x |
£¨2£©g£¨x£©=x2£¨x¡Ý0£©
g£¨x£©+g£¨x-2£©£¾2ax+2
?
|
ÔÎÊÌâµÈ¼ÛÓÚa£¼x+
| 1 |
| x |
ÀûÓú¯Êýy=x+
| 1 |
| x |
¿ÉµÃa£¼
| 1 |
| 2 |
£¨3£©ÓÉ
|
| 1 |
| 3 |
| 2 |
| 3 |
ÓÉ
|
| 3 |
| x |
| 3 |
1+6Sn-1+
| ||
| 6 |
½«x´úÈëan=2(x-Sn-1)=
| 1 |
| 3 |
| 1 |
| 3 |
| 1+12Sn-1 |
¡à(an-
| 1 |
| 3 |
| 1 |
| 9 |
| 2 |
| 3 |
ÓÖ(an+1-
| 1 |
| 3 |
| 1 |
| 9 |
Á½Ê½Ïà¼õ¿ÉµÃ£º(an+1-
| 1 |
| 3 |
| 1 |
| 3 |
| 4 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
ÓÖ£¬ÒòΪan£¾0£¬ËùÒÔan+1-an-
| 2 |
| 3 |
´Ó¶øanÊÇÒÔ
| 2 |
| 3 |
| 2 |
| 3 |
| 2n |
| 3 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˺¯Êý½âÎöʽµÄÇó·¨ÒÔ¼°ÊýÁÐÓ뺯ÊýµÄ×ۺϣ¬¿¼²éÁËѧÉúµÄ¼ÆËãÄÜÁ¦ºÍ¶ÔÊýÁеÄ×ÛºÏÕÆÎÕ£¬½âÌâʱעÒâÕûÌå˼ÏëºÍת»¯Ë¼ÏëµÄÔËÓã¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
| ¦Ð |
| 2 |
A¡¢f(x)=2sin(¦Ðx+
| ||
B¡¢f(x)=2sin(2¦Ðx+
| ||
C¡¢f(x)=2sin(¦Ðx+
| ||
D¡¢f(x)=2sin(2¦Ðx+
|