题目内容
(1)方程f[g(x)]=0有且仅有三个解;
(2)方程g[f(x)]=0有且仅有三个解;
(3)方程f[f(x)]=0有且仅有九个解;
(4)方程g[g(x)]=0有且仅有一个解.
那么,其中正确命题的个数是( )
分析:通过f(x)=0可知函数有三个解,g(x)=0有一个解,具体分析(1),(2),(3),(4)推出正确结论.
解答:解:(1)方程f[g(x)]=0有且仅有三个解;g(x)有三个不同值,由于y=g(x)是减函数,所以有三个解,正确;
(2)方程g[f(x)]=0有且仅有三个解;从图中可知,f(x)∈(0,a)可能有1,2,3个解,不正确;
(3)方程f[f(x)]=0有且仅有九个解;类似(2)不正确;
(4)方程g[g(x)]=0有且仅有一个解.结合图象,y=g(x)是减函数,故正确.
故选B.
(2)方程g[f(x)]=0有且仅有三个解;从图中可知,f(x)∈(0,a)可能有1,2,3个解,不正确;
(3)方程f[f(x)]=0有且仅有九个解;类似(2)不正确;
(4)方程g[g(x)]=0有且仅有一个解.结合图象,y=g(x)是减函数,故正确.
故选B.
点评:本题考查根的存在性及根的个数判断,函数的图象,考查逻辑思维能力,是基础题.
练习册系列答案
相关题目
若函数f(x)=log2
的定义域和值域均为[1,+∞),则实数a的取值集合为( )
| x2+ax+1 |
| x |
| A、{0} |
| B、{a|0≤a≤1} |
| C、{a|a≥0} |
| D、{a|a≥2} |