题目内容

已知Sn是公差为d≠0的等差数列{an}的前n项和,{bn}是公比为1-d的等比数列,若b1=a1,b2=a1a2,b3=a2a3,则
lim
n→∞
Sn
a2n
=______.
由等比数列的定义可得
b2
b1
b3
b2
=  1-d
,即a2=
a3
a1
=1-d,∴a1+d=1-d,
∴a1=1-2d,a3=2d2-3d+1,∴2(1-d)=(1-2d )+(2d2-3d+1),∴d=
3
2
,a1=-2,
∴an=-2+(n-1)
3
2
=
3
2
n
-
7
2
,an2=
9n2-42n+49
4

Sn =na1 +
n(n-1)d
2
=
3n2-11n
4

lim
n→∞
Sn
an2
=
lim
n→∞
3n2-11n
9n2-42n+49
=
lim
n→∞
3-
11
n
9-
42
n
+
49
n2
=
3-0
9-0+0
=
1
3

答案为
1
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网