题目内容
| lim |
| n→∞ |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n+2 |
| A、0 | B、1 | C、2 | D、3 |
分析:通过观察n(1-
)(1-
)(1-
)…(1-
),先化简括号中的式子,再根据极限的定义求极限.
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n+2 |
解答:解:
[n(1-
)(1-
)(1-
)(1-
)]
=
[n×
×
×
×…×
]
=
=2.
故选C.
| lim |
| n→∞ |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n+2 |
=
| lim |
| n→∞ |
| 2 |
| 3 |
| 3 |
| 4 |
| 4 |
| 5 |
| n+1 |
| n+2 |
=
| lim |
| n→∞ |
| 2n |
| n+2 |
=2.
故选C.
点评:本题主要考查极限及其运算,较为简单.
练习册系列答案
相关题目