题目内容

已知实数x,y,z满足xyz=32,x+y+z=4,则|x|+|y|+|z|的最小值为
12
12
分析:为了去掉绝对值,先讨论三个实数的符号一定为一正二负,从而将|x|+|y|+|z|转化为关于x的函数,再利用判别式法求x的范围,即可得所求
解答:解:不妨设x≥y≥z由于xyz=32>0所以x,y,z要么满足全为正,要么一正二负
若是全为正数,由均值不等式得:4=x+y+z≥3
3xyz
,所以xyz≤
64
27
<32,矛盾.
所以必须一正二负.即x>0>y≥z
从而|x|+|y|+|z|=x-y-z=2x-(x+y+z)=2x-4,所以只要x最小
将z=4-x-y代入xyz=32得:xy2+(x2-4x)y-32=0
由△≥0,得:(x2-4x)2≥128x
即x(x-8)(x2+16)≥0因为x>0,x2+16>0,所以一定有x-8≥0,x≥8
所以|x|+|y|+|z|的最小值为2×8-4=12
故答案为12
点评:本题考查了推理论证能力,均值定理的运用,含绝对值函数问题的解决方法,判别式法求变量的取值范围
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网