题目内容
函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为( )
|
| A. | (﹣1,1) | B. | (﹣1,+∞) | C. | (﹣∞,﹣l) | D. | (﹣∞,+∞) |
解答:
解:设F(x)=f(x)﹣(2x+4),
则F(﹣1)=f(﹣1)﹣(﹣2+4)=2﹣2=0,
又对任意x∈R,f′(x)>2,所以F′(x)=f′(x)﹣2>0,
即F(x)在R上单调递增,
则F(x)>0的解集为(﹣1,+∞),
即f(x)>2x+4的解集为(﹣1,+∞).
故选B
练习册系列答案
相关题目
若函数f(x)的定义域为[-1,2],则函数
的定义域为( )
| f(x+2) |
| x |
| A、[-1,0)∪(0,2] |
| B、[-3,0) |
| C、[1,4] |
| D、(0,2] |