题目内容

函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为(  )

 

A.

(﹣1,1)

B.

(﹣1,+∞)

C.

(﹣∞,﹣l)

D.

(﹣∞,+∞)

解答:

解:设F(x)=f(x)﹣(2x+4),

则F(﹣1)=f(﹣1)﹣(﹣2+4)=2﹣2=0,

又对任意x∈R,f′(x)>2,所以F′(x)=f′(x)﹣2>0,

即F(x)在R上单调递增,

则F(x)>0的解集为(﹣1,+∞),

即f(x)>2x+4的解集为(﹣1,+∞).

故选B

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网