题目内容

已知函数f(x)=x|x-2|.
(Ⅰ)解不等式f(x)<3;
(Ⅱ)设0<a<2,求f(x)在[0,a]上的最大值.
(Ⅰ)∵x|x-2|<3?
x≥2
x2-2x-3<0
x<2
x2-2x+3>0
?2≤x<3或x<2,
∴不等式f(x)<3的解集为{x|x<3}  (5分)

(Ⅱ)f(x)=x|x-2|=
x2-2x=(x-1)2-1,x≥2
-x2+2x=-(x-1)2+1,x<2.

∴f(x)的单调递增区间是(-∞,1]和[2,+∞);单调递减区间是[1,2],(8分)
(1)当0<a≤1时,f(x)是[0,a]上的增函数,此时,f(x)在[0,a]上的最大值是f(a)=a(2-a);
..(11分)
(2)当1<a<2时,f(x)在[0,1]上是增函数,在[1,a]上是减函数,
此时f(x)在[0,a]上的最大值是f(1)=1   (14分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网