题目内容

如图,在直三棱柱ABC-A1B1C1中,AC=BC,点D是AB的中点.
(1)求证:BC1∥平面CA1D;
(2)求证:平面CA1D⊥平面AA1B1B.
分析:(1)连接AC1,交A1C于点O,连接DO,先利用三角形中位线定理证明BC1∥DO,从而利用线面平行的判定定理证明所证结论;
(2)先利用面面垂直的性质定理证明直线CD⊥平面AA1B1B,再由面面垂直的判定定理证明所证结论即可
解答:解:如图,(1)连接AC1,交A1C于点O,连接DO
在△ABC1中,点D是AB的中点,点O是A1C的中点
∴BC1∥DO,BC1?平面CA1D,DO⊆平面CA1D
∴BC1∥平面CA1D
(2)∵AC=BC,D是AB的中点
∴CD⊥AB
∵直三棱柱ABC-A1B1C1中,平面AA1B1B⊥平面ABC,平面AA1B1B∩平面ABC=AB
∴CD⊥平面AA1B1B,又CD?平面CA1D
∴平面CA1D⊥平面AA1B1B
点评:本题主要考查了直棱柱中的线面、面面关系,线面及面面平行、垂直的判定定理和性质定理的应用,推理论证的能力和表达能力,注意证明过程的严密性
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网