题目内容
(2012•徐汇区一模)数列{an}的通项公式an=
,前n项和为Sn,则
Sn=
.
|
| lim |
| n→∞ |
| 3 |
| 2 |
| 3 |
| 2 |
分析:先利用裂项相消法求出Sn,再求极限即可.
解答:解:Sn=1+
+
+…+
=1+
-
+
-
+…+
-
=
-
,
则
Sn=
(
-
)=
.
故答案为:
.
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n(n+1) |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
| 3 |
| 2 |
| 1 |
| n+1 |
则
| lim |
| n→∞ |
| lim |
| n→∞ |
| 3 |
| 2 |
| 1 |
| n+1 |
| 3 |
| 2 |
故答案为:
| 3 |
| 2 |
点评:本题考查数列极限的求法,属中档题,解决本题的关键是先用裂项相消法求和,再利用常见数列极限求解.
练习册系列答案
相关题目