题目内容
已知:
=(2cosx,sinx),
=(
cosx,2cosx).设函数f(x)=
•
-
.(x∈R)求:
(1)f(x)的最小正周期;
(2)f(x)的单调递增区间;
(3)若f(
-
)-f(
+
)=
,且α∈(
,π),求θ
| a |
| b |
| 3 |
| a |
| b |
| 3 |
(1)f(x)的最小正周期;
(2)f(x)的单调递增区间;
(3)若f(
| α |
| 2 |
| π |
| 6 |
| α |
| 2 |
| π |
| 12 |
| 6 |
| π |
| 2 |
f(x)=a•b-
=2
cos2x+2sinxcosx-
=sin2x+
(2cos2x-1)
=sin2x+
cos2x
=2sin(2x+
)
(1)函数f(x)的最小正周期最小正周期为T=
=π
(2)由2kπ-
≤2x+
≤2kπ+
得2kπ-
≤2x≤2kπ+
∴kπ-
≤x≤kπ+
,(k∈Z)
∴函数f(x)的单调增区间为[kπ-
,kπ+
],(k∈Z)
(3)∵f(
-
)-f(
+
)=
,∴2sinα-2cosα=
∴2
sin(α-
)=
,∴sin(α-
)=
∵α∈(
,π),∴α-
∈(
,
,
∴α-
=
或
,∴α=
或
(13分)
| 3 |
| 3 |
| 3 |
=sin2x+
| 3 |
=sin2x+
| 3 |
=2sin(2x+
| π |
| 3 |
(1)函数f(x)的最小正周期最小正周期为T=
| 2π |
| 2 |
(2)由2kπ-
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
| 5π |
| 6 |
| π |
| 6 |
∴kπ-
| 5π |
| 12 |
| π |
| 12 |
∴函数f(x)的单调增区间为[kπ-
| 5π |
| 12 |
| π |
| 12 |
(3)∵f(
| α |
| 2 |
| π |
| 6 |
| α |
| 2 |
| π |
| 12 |
| 6 |
| 6 |
∴2
| 2 |
| π |
| 4 |
| 6 |
| π |
| 4 |
| ||
| 2 |
∵α∈(
| π |
| 2 |
| π |
| 4 |
| π |
| 4 |
| 3π |
| 4 |
∴α-
| π |
| 4 |
| π |
| 3 |
| 2π |
| 3 |
| 7π |
| 12 |
| 11π |
| 12 |
练习册系列答案
相关题目
已知向量
=(2cosα,2sinα),
=(3cosβ,3sinβ),若向量
与
的夹角为60°,则直线xcosα-ysinα+
=0与圆(x-cosβ)2+(y+sinβ)2=
的位置关系是( )
| a |
| b |
| a |
| b |
| 1 |
| 2 |
| 1 |
| 2 |
| A、相交 | B、相切 |
| C、相离 | D、相交且过圆心 |