题目内容
10.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$中,|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=4,|$\overrightarrow{a}$+$\overrightarrow{b}$|=6,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{30}$.分析 由|$\overrightarrow{a}$+$\overrightarrow{b}$|=6可推出2$\overrightarrow{a}$•$\overrightarrow{b}$=11,从而求|2$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{4|\overrightarrow{a}{|}^{2}+|\overrightarrow{b}{|}^{2}-4\overrightarrow{a}•\overrightarrow{b}}$.
解答 解:∵|$\overrightarrow{a}$+$\overrightarrow{b}$|=6,
∴|$\overrightarrow{a}$+$\overrightarrow{b}$|2=|$\overrightarrow{a}$|2+|$\overrightarrow{b}$|2+2$\overrightarrow{a}$•$\overrightarrow{b}$=36,
即9+16+2$\overrightarrow{a}$•$\overrightarrow{b}$=36,
故2$\overrightarrow{a}$•$\overrightarrow{b}$=11,
故|2$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{4|\overrightarrow{a}{|}^{2}+|\overrightarrow{b}{|}^{2}-4\overrightarrow{a}•\overrightarrow{b}}$
=$\sqrt{4×9+16-22}$=$\sqrt{30}$;
故答案为:$\sqrt{30}$.
点评 本题考查了平面向量数量积的运算的应用.
| A. | $\frac{\sqrt{3}}{4}{a}^{2}$ | B. | $\frac{\sqrt{4}}{8}{a}^{2}$ | C. | $\frac{\sqrt{3}}{16}{a}^{2}$ | D. | $\frac{\sqrt{13}}{32}{a}^{2}$ |