题目内容

正四棱台上、下底面的边长为b、a(a>b)且侧面积等于两底面面积之和,则棱台的高是
ab
a+b
ab
a+b
分析:设A、B分别是棱台的底面中心,C、D分别为底面正方形边的中点.作出直角梯形ABCD如图,过C作CE⊥AD于E,设棱台的高为h,斜高为h',据题意可得
1
2
(4a+4b)h'=a2+b2,得h'=
a2+b2
2(a+b)
,再在Rt△CDE中,利用勾股定理可得CE=
ab
a+b
,即得即棱台的高h的大小.
解答:解:设棱台的高为h,斜高为h',设A、B分别是棱台的底面中心,C、D分别为底面正方形边的中点
作出直角梯形ABCD如图,过C作CE⊥AD于E
∵棱台的侧面积等于两底面面积之和,
1
2
(4a+4b)h'=a2+b2,得h'=
a2+b2
2(a+b)

Rt△CDE中,DE=AD-BC=
1
2
(a-b)
∴CE=
CD2-DE2
=
[
a2+b2
2(a+b)
]2-
1
4
(a-b)2
=
ab
a+b

即棱台的高h=
ab
a+b

故答案为:
ab
a+b
点评:本题给出棱台的侧面积等于上下底面之和,求棱台的高.着重考查了勾股定理、正棱台的基本概念和性质等知识,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网