题目内容
如果数列{an}满足a1=3,an-an+1=5anan+1(n∈N*),则an=
.
| 3 |
| 15n-14 |
| 3 |
| 15n-14 |
分析:将an-an+1=5anan+1两边同除以anan+1 得
-
=5,得出数列{
}是等差数列,先求数列{
}的通项公式,再求an
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
| 1 |
| an |
解答:解:将an-an+1=5anan+1两边同除以anan+1 得
-
=5,
∴数列{
}是等差数列,
=
+(n-1)×5=
,
an=
故答案为:
| 1 |
| an+1 |
| 1 |
| an |
∴数列{
| 1 |
| an |
| 1 |
| an |
| 1 |
| 3 |
| 15n-14 |
| 3 |
an=
| 3 |
| 15n-14 |
故答案为:
| 3 |
| 15n-14 |
点评:本题考查等差数列的判定、通项公式求解.考查转化构造、计算能力.
练习册系列答案
相关题目