题目内容

已知数列{xn}满足x1=4,xn+1=
x
2
n
-3
2xn-4

(Ⅰ)求证:xn>3;
(Ⅱ)求证:xn+1<xn
(Ⅲ)求数列{xn}的通项公式.
分析:(Ⅰ)结合题设条件,利用数学归纳法进行证明.
(Ⅱ)xn+1-xn=
x
2
n
-3
2xn-4
-xn=
-
x
2
n
+4xn-3
2xn-4
=
-(xn-1)(xn-3)
2xn-4
.由xn>3,知xn+1<xn
(Ⅲ)xn+1-1=
x
2
n
-3
2xn-4
-1=
(xn-1)2
2xn-4
xn+1-3=
x
2
n
-3
2xn-4
-3=
(xn-3)2
2xn-4
,由题题条件能导出an=2n-1.由an=log3
xn-1
xn-3
,得
xn-1
xn-3
=3an
.从而得到xn=
3an+1-1
3an-1
=
32n-1+1-1
32n-1-1
解答:解:
(Ⅰ)证明:用数学归纳法证明
①当n=1时,x1=4>3.所以结论成立.
②假设n=k(n≥1)时结论成立,即xn>3,则xn+1-3=
x
2
n
-3
2xn-4
-3=
(xn-3)2
2xn-4
>0

所以xn+1>3.
即n=k+1时,结论成立.
由①②可知对任意的正整数n,都有xn>3.(4分)
(Ⅱ)证明:xn+1-xn=
x
2
n
-3
2xn-4
-xn=
-
x
2
n
+4xn-3
2xn-4
=
-(xn-1)(xn-3)
2xn-4

因为xn>3,所以
-(xn-1)(xn-3)
2xn-4
<0
,即xn+1-xn<0.
所以xn+1<xn.(9分)
(Ⅲ)解:xn+1-1=
x
2
n
-3
2xn-4
-1=
(xn-1)2
2xn-4
xn+1-3=
x
2
n
-3
2xn-4
-3=
(xn-3)2
2xn-4

所以
xn+1-1
xn+1-3
=(
xn-1
xn-3
)2

x1-1
x1-3
=
4-1
4-3
=3

所以log3
xn+1-1
xn+1-3
=2log3
xn-1
xn-3
.(11分)
log3
x1-1
x1-3
=1

an=log3
xn-1
xn-3
,则数列{an}是首项为1,公比为2的等比数列.
所以an=2n-1
an=log3
xn-1
xn-3
,得
xn-1
xn-3
=3an

所以xn=
3an+1-1
3an-1
=
32n-1+1-1
32n-1-1
.(14分)
点评:本题考查数列的性质和应用,解题时要认真审题,注意数学归纳法的证明过程.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网