题目内容
已知数列{xn}满足x1=4,xn+1=
| ||
| 2xn-4 |
(Ⅰ)求证:xn>3;
(Ⅱ)求证:xn+1<xn;
(Ⅲ)求数列{xn}的通项公式.
分析:(Ⅰ)结合题设条件,利用数学归纳法进行证明.
(Ⅱ)xn+1-xn=
-xn=
=
.由xn>3,知xn+1<xn.
(Ⅲ)xn+1-1=
-1=
,xn+1-3=
-3=
,由题题条件能导出an=2n-1.由an=log3
,得
=3an.从而得到xn=
=
.
(Ⅱ)xn+1-xn=
| ||
| 2xn-4 |
-
| ||
| 2xn-4 |
| -(xn-1)(xn-3) |
| 2xn-4 |
(Ⅲ)xn+1-1=
| ||
| 2xn-4 |
| (xn-1)2 |
| 2xn-4 |
| ||
| 2xn-4 |
| (xn-3)2 |
| 2xn-4 |
| xn-1 |
| xn-3 |
| xn-1 |
| xn-3 |
| 3an+1-1 |
| 3an-1 |
| 32n-1+1-1 |
| 32n-1-1 |
解答:解:
(Ⅰ)证明:用数学归纳法证明
①当n=1时,x1=4>3.所以结论成立.
②假设n=k(n≥1)时结论成立,即xn>3,则xn+1-3=
-3=
>0.
所以xn+1>3.
即n=k+1时,结论成立.
由①②可知对任意的正整数n,都有xn>3.(4分)
(Ⅱ)证明:xn+1-xn=
-xn=
=
.
因为xn>3,所以
<0,即xn+1-xn<0.
所以xn+1<xn.(9分)
(Ⅲ)解:xn+1-1=
-1=
,xn+1-3=
-3=
,
所以
=(
)2.
又
=
=3,
所以log3
=2log3
.(11分)
又log3
=1,
令an=log3
,则数列{an}是首项为1,公比为2的等比数列.
所以an=2n-1.
由an=log3
,得
=3an.
所以xn=
=
.(14分)
(Ⅰ)证明:用数学归纳法证明
①当n=1时,x1=4>3.所以结论成立.
②假设n=k(n≥1)时结论成立,即xn>3,则xn+1-3=
| ||
| 2xn-4 |
| (xn-3)2 |
| 2xn-4 |
所以xn+1>3.
即n=k+1时,结论成立.
由①②可知对任意的正整数n,都有xn>3.(4分)
(Ⅱ)证明:xn+1-xn=
| ||
| 2xn-4 |
-
| ||
| 2xn-4 |
| -(xn-1)(xn-3) |
| 2xn-4 |
因为xn>3,所以
| -(xn-1)(xn-3) |
| 2xn-4 |
所以xn+1<xn.(9分)
(Ⅲ)解:xn+1-1=
| ||
| 2xn-4 |
| (xn-1)2 |
| 2xn-4 |
| ||
| 2xn-4 |
| (xn-3)2 |
| 2xn-4 |
所以
| xn+1-1 |
| xn+1-3 |
| xn-1 |
| xn-3 |
又
| x1-1 |
| x1-3 |
| 4-1 |
| 4-3 |
所以log3
| xn+1-1 |
| xn+1-3 |
| xn-1 |
| xn-3 |
又log3
| x1-1 |
| x1-3 |
令an=log3
| xn-1 |
| xn-3 |
所以an=2n-1.
由an=log3
| xn-1 |
| xn-3 |
| xn-1 |
| xn-3 |
所以xn=
| 3an+1-1 |
| 3an-1 |
| 32n-1+1-1 |
| 32n-1-1 |
点评:本题考查数列的性质和应用,解题时要认真审题,注意数学归纳法的证明过程.
练习册系列答案
相关题目