题目内容
命题“,”的否定形式是( )
A., B. ,
C., D. ,
A
在空间直角坐标系中,已知,,点P在z轴上,且满足,则点P的坐标为
已知数列的前项和(为正整数).
(1)证明:数列是等差数列,并求的通项公式;
(2)令,设数列的前项和为,是否存在实数,使得对一切正整数都成立?若存在,求出的最小值;若不存在,请说明理由.
设,若,则实数的取值范围
是 .
已知函数.
(1)若时,函数是单调函数,求实数的取值范围;
(2)记函数的最大值为,求的表达式.
已知F是抛物线的焦点,P是抛物线上一动点,则线段PF的中点轨迹方程是( )
A. B.
C. D.
双曲线(,)的离心率为2,其焦点与椭圆=1焦点相同,则双曲线的渐近线方程是_____________.
已知抛物线的焦点F恰好是双曲线的右焦点,且双曲线过点,则该双曲线的离心率是
A. B. C. D.2
等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为( )
A. B.2 C.4 D.8