题目内容
(2012•合肥一模)已知数列{an}为等差数列,Sn为其前n项和,a1+a5=6,S9=63.
(1)求数列{an}的通项公式an及前n项和Sn;
(2)数列{bn}满足:对?n∈N*,bn=2an,求数列{an•bn}的前n项和Tn.
(1)求数列{an}的通项公式an及前n项和Sn;
(2)数列{bn}满足:对?n∈N*,bn=2an,求数列{an•bn}的前n项和Tn.
分析:(1)由S9=63,解得a5=7.由a1+a5=6,得a1=-1,故d=
=2,由此能求出数列{an}的通项公式an及前n项和Sn.
(2)由bn=22n-3,知an•bn=(2n-3)•22n-3,故Tn=-1•2-1+1•21+3•23+5•25+…+(2n-3)•22n-3,利用错位相减法能求出数列{an•bn}的前n项和Tn.
| a5-a1 |
| 4 |
(2)由bn=22n-3,知an•bn=(2n-3)•22n-3,故Tn=-1•2-1+1•21+3•23+5•25+…+(2n-3)•22n-3,利用错位相减法能求出数列{an•bn}的前n项和Tn.
解答:解:(1)∵S9=63,∴9a5=63,解得a5=7.
∵a1+a5=6,∴a1=-1,
∴d=
=2,
∴an=2n-3,Sn=n2-2n.
(2)∵an=2n-3,bn=2an,
∴bn=22n-3,
∴an•bn=(2n-3)•22n-3,
Tn=-1•2-1+1•21+3•23+5•25+…+(2n-3)•22n-3,
4Tn=-1×21+1•23+3•25+…+(2n-5)•22n-3+(2n-3)•22n-1,
两式相减,得:-3Tn=-
+2(2+23+25+…+22n-3)-(2n-3)•22n-1
=-
+2•
-(2n-3)•22n-1
=
,
Tn=
.
∵a1+a5=6,∴a1=-1,
∴d=
| a5-a1 |
| 4 |
∴an=2n-3,Sn=n2-2n.
(2)∵an=2n-3,bn=2an,
∴bn=22n-3,
∴an•bn=(2n-3)•22n-3,
Tn=-1•2-1+1•21+3•23+5•25+…+(2n-3)•22n-3,
4Tn=-1×21+1•23+3•25+…+(2n-5)•22n-3+(2n-3)•22n-1,
两式相减,得:-3Tn=-
| 1 |
| 2 |
=-
| 1 |
| 2 |
| 2(1-22(n-1)) |
| 1-22 |
=
| (11-6n)•22n-11 |
| 6 |
Tn=
| (6n-11)•22n+11 |
| 18 |
点评:本题考查数列的通项公式和前n项和的求法,解题时要认真审题,仔细解答,注意错位相减法的合理运用.
练习册系列答案
相关题目