题目内容
已知抛物线C:y2=8x与点M(-2,2),过C的焦点且斜率为k的直线与C交于A、B两点,若·=0,则k等于( )
(A) (B) (C) (D)2
D
设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f等于( )
(A)- (B)- (C) (D)
下列函数中,与函数y=有相同定义域的是( )
(A)f(x)=ln x (B)f(x)=
(C)f(x)=|x| (D)f(x)=ex
抛物线y2=8x的焦点到准线的距离是( )
(A)1 (B)2 (C)4 (D)8
设M(x0,y0)为抛物线C:x2=8y上一点,F为抛物线C的焦点,以F为圆心、|FM|为半径的圆和抛物线C的准线相交,则y0的取值范围是( )
(A)(0,2) (B)[0,2]
(C)(2,+∞) (D)[2,+∞)
如图所示,抛物线C1:x2=4y,C2:x2=-2py(p>0).点M(x0,y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O).当x0=1-时,切线MA的斜率为-.
(1)求p的值;
(2)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).
已知抛物线y2=2px(p>0)的焦点F与双曲线-=1的右焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上且|AK|=|AF|,则A点的横坐标为( )
(A)2 (B)3 (C)2 (D)4
在平面直角坐标系xOy中,过坐标原点的一条直线与函数f(x)=的图象交于P,Q两点,则线段PQ长的最小值是 .
正实数数列{an}中,a1=1,a2=5,且{}成等差数列.
(1)证明:数列{an}中有无穷多项为无理数;
(2)当n为何值时,an为整数?并求出使an<200的所有整数项的和.