题目内容
阅读如图所示的程序框图,运行相应的程序.若输入某个正整数n后,输出的S∈(31,72),则n的值为
A.5 B.6 C.7 .8
B
已知是两个命题,若“”是假命题,则
A.都是假命题 B.都是真命题
C.是假命题是真命题 D.是真命题是假命题
如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,.
(Ⅰ)证明:平面PQC⊥平面DCQ;
(Ⅱ)求二面角Q—BP—C的余弦值.
已知曲线的参数方程是.(为参数),以坐标原点O为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,则在曲线上到直线的距离为的点有_____________个。
已知.
(1) 若存在单调递减区间,求实数的取值范围;
(2) 若,求证:当时,恒成立;
(3) 利用(2)的结论证明:若,则。
如图,半径为2的半圆有一内接梯形ABCD,它的下底AB是⊙O的直径,上底CD的端点在圆周上.若双曲线以A,B为焦点,且过C,D两点,则当梯形ABCD的周长最大时,双曲线的实轴长为
A.+1
B.2+2
C.-1
D.2-2
在锐角△ABC中,角A,B,C的对边分别为a,b,c.已知sin(A-B)=cosC.
(Ⅰ)若a=3,b=,求c;
(Ⅱ)求的取值范围.
如图,在正三棱锥A-BCD中,E、F分别是AB、BC的中点,EF⊥DE,且BC=1,则正三棱锥A-BCD的体积是( )
A. B. C. D.
方程的解的个数是________.