题目内容
14.在(1+x)6(1+y)4的展开式中,xy2项的系数是36.分析 由条件利用二项式展开式的通项公式,求得xy2项的系数.
解答 解:在(1+x)6(1+y)4的展开式中,xy2项的系数为 ${C}_{6}^{1}$•${C}_{4}^{2}$=36,
故答案为:36.
点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.
练习册系列答案
相关题目
9.甲、乙两人在相同条件下各射击10次,每次命中的环数如下:
(1)分别计算以上两组数据的平均数;
(2)分别计算以上两组数据的方差;
(3)根据计算结果,对甲乙两人的射击成绩作出评价.
( 参考公式:${s}^{2}=\frac{1}{n}$[${(x}_{1}-\overline{x})^{2}$+$({x}_{2}-\overline{x})^{2}$+…+$({x}_{n}-\overline{x})^{2}$])
| 甲 | 8 | 6 | 7 | 8 | 6 | 5 | 9 | 10 | 4 | 7 |
| 乙 | 6 | 7 | 7 | 8 | 6 | 7 | 8 | 7 | 9 | 5 |
(2)分别计算以上两组数据的方差;
(3)根据计算结果,对甲乙两人的射击成绩作出评价.
( 参考公式:${s}^{2}=\frac{1}{n}$[${(x}_{1}-\overline{x})^{2}$+$({x}_{2}-\overline{x})^{2}$+…+$({x}_{n}-\overline{x})^{2}$])