题目内容

已知函数f(x)对任意x∈R都有f(x)+f(1-x)=
3
2

(1)求f(
1
2
)
的值;
(2)若数列{an}满足an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(
n
n
)  (n∈{N
,求数列{an}的通项公式;
(3)设bn=
2
4an-5
 (n∈{N
,求数列{Cn}的前n项和Tn
分析:(1)在f(x)+f(1-x)=
3
2
中,令x=
1
2
,可求出f(
1
2
)
的值;
(2)利用倒序相加法可求出数列{an}的通项公式;
(3)根据数列{Cn}的通项公式的特点可利用裂项求和法进行求解.
解答:解:(1)在f(x)+f(1-x)=
3
2
中,
令x=
1
2
f(
1
2
)+f(1-
1
2
)=
3
2

f(
1
2
)=
3
4

(2)∵an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1)

an=f(1)+f(
n-1
n
)+f(
n-2
n
)+…+f(
1
n
)+f(0)

根据f(x)+f(1-x)=
3
2

∴f(0)+f(1)=
3
2
f(
1
n
)+f(
n-1
n
) =
3
2
,…
2an=
3(n+1)
2

an=
3n+3
4

(3)∵bn=
2
4an-5
=
2
3n-2

Cn=bnbn+1=
4
(3n-2)(3n+1)
=
4
3
(
1
3n-2
-
1
3n+1
)

∴Tn=C1+C2+…Cn=
4
3
[(1-
1
4
)+(
1
4
-
1
7
)+…+(
1
3n-2
-
1
3n+1
)]
=
4
3
(1-
1
3n+1
)
=
4n
3n+1
点评:本题主要考查了倒序相加法求数列的通项,以及利用裂项求和法求数列的和,同时考查了计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网