题目内容
已知函数f(x)=x2,集合A={x|f(x-1)=ax,x∈R},且A∪{x|x是正实数}={x|x是正实数},则实数a的取值范围是______.
∵f(x)=x2,f(x-1)=ax
∴f(x-1)=(x-1)2=ax,即x2-(2+a)x+1=0
∵A∪{x|x是正实数}={x|x是正实数},
∴x2-(2+a)x+1=0只有正实数解或此方程无解
若A中只有正实数解,即2+a=x+
≥2,∴a≥0即[0,+∞)
若A是空集,则方程x2-(2+a)x+1=0无解,可得(2+a)2-4<0,得-4<a<0
故答案为(-4,+∞).
∴f(x-1)=(x-1)2=ax,即x2-(2+a)x+1=0
∵A∪{x|x是正实数}={x|x是正实数},
∴x2-(2+a)x+1=0只有正实数解或此方程无解
若A中只有正实数解,即2+a=x+
| 1 |
| x |
若A是空集,则方程x2-(2+a)x+1=0无解,可得(2+a)2-4<0,得-4<a<0
故答案为(-4,+∞).
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|