题目内容
计算:
(1)4x
(-3x
y-
)÷(-6x-
y-
)
(2)(loga(ab))2+(logab)2-2loga(ab).logab.
(1)4x
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
(2)(loga(ab))2+(logab)2-2loga(ab).logab.
分析:(1)利用同底数的幂的乘除运算化简求值;
(2)利用对数的运算性质,即乘积的对数等于对数的和展开后合并同类项即可得到答案.
(2)利用对数的运算性质,即乘积的对数等于对数的和展开后合并同类项即可得到答案.
解答:解:(1)4x
(-3x
y-
)÷(-6x-
y-
)
=2(x
y-
)÷(x-
y-
)
=2x
-(-
)y-
-(-
)
=2xy
;
(2)(loga(ab))2+(logab)2-2loga(ab).logab
=(logaa+logab)2+(logab)2-2(logaa+logab)logab
=1+2logab+(logab)2+(logab)2-2logab-2(logab)2
=1.
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
=2(x
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
=2x
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
=2xy
| 1 |
| 3 |
(2)(loga(ab))2+(logab)2-2loga(ab).logab
=(logaa+logab)2+(logab)2-2(logaa+logab)logab
=1+2logab+(logab)2+(logab)2-2logab-2(logab)2
=1.
点评:本题考查了有理指数幂的化简与求值,考查了对数式的运算性质,关键是对性质的记忆,是基础的计算题.
练习册系列答案
相关题目