题目内容
7.一同学在电脑中打出如下图若干个圆(○表示空心圆,●表示实心圆)○●○○●○○○●○○○○●○○○○○●○…问:到2006个圆中有( )个实心圆.
| A. | 59 | B. | 60 | C. | 61 | D. | 62 |
分析 本题可依次解出空心圆个数n=1,2,3,…,圆的总个数.再根据规律,可得出前2006个圆中,实心圆的个数.
解答 解:∵n=1时,圆的总个数是2;
n=2时,圆的总个数是5,即5=2+3;
n=3时,圆的总个数是9,即9=2+3+4;
n=4时,圆的总个数是14,即14=2+3+4+5;
…;
∴n=n时,圆的总个数是2+3+4+…+(n+1).
∵2+3+4+…+62=1952<2006,2+3+4+…+63=2015>2006,
∴在前2006个圆中,共有61个实心圆.
故选:C
点评 本题是一道找规律的题目,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.
练习册系列答案
相关题目
2.甲、乙、丙三位学生独立地解同一道题,甲乙做对的概率分别为$\frac{1}{2}$,$\frac{1}{3}$,丙做对的概率为m,且三位学生是否做对相互独立.记ξ为这三位学生中做对该题的人数,其分布列为:
(1)求至少有一位学生做对该题的概率;
(2)求m的值;
(3)求ξ的数学期望.
| ξ | 0 | 1 | 2 | 3 |
| P | $\frac{1}{4}$ | a | b | $\frac{1}{24}$ |
(2)求m的值;
(3)求ξ的数学期望.